
Checker
Release 0.1alpha

Nomadic Labs / Tweag

Feb 15, 2022

CONTENTS:

1 Introduction 1
1.1 What is Checker? . 1
1.2 System overview of a Checker deployment . 2
1.3 Configuring and building Checker for different use-cases . 2

2 Design 5
2.1 Concepts . 5

2.1.1 The clock . 5
2.1.2 Target and quantity . 5
2.1.3 The instantaneous drift . 6
2.1.4 Oracles . 6

2.2 Algorithmic control . 7
2.3 Burrows . 8

2.3.1 Burrowing and overburrowing . 8
2.3.2 Burrow fee . 9
2.3.3 Imbalance adjustment . 9

2.4 Liquidation . 9
2.5 Liquidation auction . 10
2.6 CFMM . 10

3 Functional Specification 11
3.1 Checker . 11

3.1.1 Working with burrows . 11
3.1.2 CFMM Exchange . 13
3.1.3 Liquidation Auctions . 15
3.1.4 Maintenance entrypoints . 16
3.1.5 FA2 Interface . 17
3.1.6 FA2 Views . 17
3.1.7 Deployment . 20

3.2 wtez . 20
3.2.1 Overview . 20
3.2.2 Deposits and withdrawals . 20
3.2.3 FA2 Interface . 21
3.2.4 Internal entrypoints . 22

3.3 wctez . 23
3.3.1 Overview . 23
3.3.2 Minting and redeeming tokens . 23
3.3.3 FA2 Interface . 24

4 Operational descriptions 25

i

4.1 System Parameters . 25
4.1.1 State . 25
4.1.2 Initialization . 26
4.1.3 Price API . 26
4.1.4 Adjustment index . 26
4.1.5 Touching . 27
4.1.6 Misc . 30

4.2 Burrow State & Liquidation . 30
4.2.1 State . 30
4.2.2 Touching . 31
4.2.3 Is a burrow collateralized (i.e. not overburrowed)? . 31
4.2.4 Is a burrow a candidate for liquidation? . 31
4.2.5 How much collateral should we liquidate? . 32
4.2.6 Was the liquidation warranted? . 34
4.2.7 What if the liquidation was warranted? . 34
4.2.8 Misc . 35

4.3 Liquidation Auctions . 35
4.3.1 State . 35
4.3.2 Initiating a liquidation . 36
4.3.3 Cancelling a liquidation slice . 36
4.3.4 Lot auction . 36
4.3.5 Touching a liquidation_slice . 37
4.3.6 Claiming a winning bid . 37
4.3.7 Maintenance . 37

4.4 CFMM subsystem . 37
4.4.1 State . 37
4.4.2 Initialization . 38
4.4.3 General notes on the interfaces . 38
4.4.4 Adding liquidity . 38
4.4.5 Removing liquidity . 39
4.4.6 Buying Kit . 40
4.4.7 Selling Kit . 41
4.4.8 Misc . 42

5 Deploying Checker 43

6 Glossary 45
6.1 Kit . 45
6.2 Burrow . 45
6.3 Circulating kits . 45
6.4 Outstanding kits . 45
6.5 Liquidation lot . 45
6.6 Liquidation slice . 45
6.7 Liquidation queue . 46
6.8 Imbalance . 46
6.9 Imbalance adjustment . 46

7 Indices and tables 47

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is Checker?

Checker is a generic piece of software for creating robocoins on the Tezos blockchain. It is an open source project
supported by Nomadic Labs, Tweag and TZ Connect Berlin.

A robocoin is a cryptographic token (or “coin”) that tracks an external measure of value, by using various feedback
mechanisms to algorithmically control its supply. There is no widely accepted definition of the term, which has been
created for the purpose of this document.

While it may have some similarities, Checker’s robocoin mechanism differs from the design of other coin systems
which aim to track an external value (such as a currency). Coin designs such as those of the JPM and Facebook’s
Libra relied on regulation by a central authority or administrator, which Checker does not require. The Dai stablecoin

1

https://tezos.com/
https://nomadic-labs.com/
https://tweag.io/
https://www.jpmorgan.com/solutions/cib/news/digital-coin-payments
https://www.theguardian.com/technology/2019/jun/18/what-is-libra-facebook-new-cryptocurrency)

Checker, Release 0.1alpha

managed by the MakerDAO project decentralizes its governance, using voting to manage the financial risks of Dai and
to ensure its stability: Checker does not require governance by decentralized voting either.

The Checker system eliminates governance by automating the regulation of the robocoin’s value. Specifically, Checker
algorithmically controls the coin’s supply by creating incentives for creation and destruction, in order to maintain a
smoothed drift of the value of the coin towards that of its external target measure.

Any number of Checker deployments can exist on a Tezos chain, each managing a separate robocoin which tracks a
different external measure of value.

1.2 System overview of a Checker deployment

At its core, Checker is a single smart contract which is tied at build and deployment time to the following external
contracts:

1. An oracle contract that will be periodically queried for the value of its external target measure.

2. An FA2 token contract which is used as collateral within Checker. Users transfer these tokens to Checker when
creating burrows or depositing collateral and receive tokens when making withdrawals from their burrows.

3. An FA2 token contract which is used in Checker’s CFMM.

4. The new ctez system, which provides the ctez token: this token has a value which tracks that of Tez itself,
but without affording the holder any baking rights. ctez is used in Checker’s CFMM for instances of Checker
configured to use tez collateral.

A Checker deployment enables its users to mint and burn its robocoin: Checker manages peripheral “burrow” contracts
on those users’ behalf, and places their collateral deposits there.

For users who wish to exchange the robocoin with other commodities, or who wish to provide liquidity for such
exchanges, the deployment includes a CFMM (Constant Function Market Maker) facility. This allows an exchange
between the robocoin and a single other FA2 token which can be configured at build time.

Finally, the deployment allows for liquidation of collateral tokens against which depositors have minted robocoins, to
manage when relative prices changes render the collateral insufficient. A batched auction mechanism facilitates this
liquidation.

The deployment adjusts the terms for minting, burning and collateralising its robocoin algorithmically based on its
current market price and the target oracle feed, such that the price drifts towards the target.

An FA2 interface is provided for each deployment’s robocoin.

1.3 Configuring and building Checker for different use-cases

Checker uses a configuration file, checker.yaml, for building the contract for different use-cases TODO: Add
reference to a config file doc section. While some configurations such as system constants do not
cause structural differences in the Checker contract, other configurations such as the collateral type require slight
structural variations.

Checker currently supports the following variations:

1. Collateral type

a. collateral_type=fa2 - In this case, the collateral type is an existing FA2 token and the CFMM is
configured to use the same FA2 token.

2 Chapter 1. Introduction

https://makerdao.com/en/
https://github.com/tezos-checker/ctez

Checker, Release 0.1alpha

b. collateral_type=tez - A special case of (1). In this case Checker’s CFMM is required to use the
wctez FA2 wrapper for ctez and the FA2 collateral contract must use the wtez FA2 wrapper for tez, both of
which are included in the Checker repository.

2. Drift derivative curve type

a. curve_type=bang-bang - In this case, the drift derivative implementation uses a “bang-bang” curve
which is discontinuous.

b. curve_type=continuous - In this case, the drift derivative implementation uses a continuous curve.

3. TODO: Oracle type (index vs. token-based)

1.3. Configuring and building Checker for different use-cases 3

Checker, Release 0.1alpha

4 Chapter 1. Introduction

CHAPTER

TWO

DESIGN

This document starts by introducing some important concepts underlying the notion of this robocoin and its imple-
mentation, such as the notion of target, quantity, and oracles. Then, we present the algorithmic component that ensures
the stability of the target. However, all the robocoin system with its control mechanism needs kits to be created and
destroyed. This is made possible by the notion of burrows. Therefore, we present in a subsequent part burrows and
their lifecycle, including creation, auctions, and liquidation. Finally, we discuss how the automatic control mechanism
can be complemented by on-chain governance, which completes the whole picture of the notion of robocoin.

2.1 Concepts

The following sections define concepts which together work to form Checker.

2.1.1 The clock

Any computation on a blockchain happens in discrete time. We note the timestamps at which the Checker system is
updated as a series of increasing timestamps, 𝑡𝑖. Ideally, these updates happen every time a new block is added to the
blockchain and thus, under the current economic protocol, those timestamps are separated by about a minute each.

That said, the system is designed to be resilient to changes in the interblock time and also to occasional missing updates
upon added blocks.

2.1.2 Target and quantity

In Checker, robocoins, denominated in “kit” are algorithmically balanced to achieve a certain degree of steadiness
with respect to a target, which is expressed in terms of a quantity and an index.

The word “kit” is chosen because it’s short, simple to pronounce, and means a baby fox (which seems appropriate for
a smart currency).

The quantity, 𝑞𝑡𝑖 , expressed in kit−1, is a time-dependent property of the system which can fluctuate upwards or
downwards.

The index, expressed in kit, is an external time-dependent measure of value. Examples of an index include:

• “the median hourly minimum wage across OCDE countries, expressed in kits”, and

• “the value of one CHF (Swiss Franc), expressed in kits”.

This index is provided through a combination of off-chain and on-chain oracles.

The target 𝑝𝑡𝑖 is the dimensionless product of the index and the quantity. Examples of target include:

• “the median of 𝑞𝑡𝑖 hours of minimum wage across all OCDE countries as a number of kits”,

5

Checker, Release 0.1alpha

• “the minimal compensation, in kits, that an airline might owe a passenger, pursuant to the Vienna convention,
should they lose 𝑞𝑡𝑖 kg of luggage as a number of kits”, and

• “how many kits for 𝑞𝑡𝑖 Swiss Francs”.

Intuitively, if the target 𝑝𝑡𝑖 is below 1, then kits are, in a sense “too expensive” and if the target is above 1 then kits
are, in a sense, “too cheap”.

2.1.3 The instantaneous drift

The instantaneous drift 𝑑𝑡, or just drift, is a dynamic parameter (which varies continuously over time) used for
adjusting the quantity 𝑞. It represents the growth or shrinking of 𝑞 per unit of time, and is measured in Nepers (Np),
or sub-units thereof, such as centinepers (cNp). The drift is implicitly continuous, piecewise-quadratic between two
clock ticks with continuous derivatives.

The system applies algorithmic control mechanisms in order to produce a drift that is defined at all time 𝑡.

Essentially, our control mechanism provides 𝑑′ the derivative of 𝑑 at clock ticks, and we interpolate quadratically
between them.

We can set 𝑑0 = 𝑑′0 = 0; the system will adjust automatically so the initial values do not particularly matter (so long
as they are not absurdly large).

𝑑′𝑡𝑖+1
is computed as defined in the algorithmic control section and 𝑑𝑡𝑖+1 is then:

𝑑𝑡𝑖+1 = 𝑑𝑡𝑖 +
1

2
(𝑑′𝑡𝑖 + 𝑑′𝑡𝑖+1

)(𝑡𝑖+1 − 𝑡𝑖)

The drift 𝑑(𝑡) is applied to the quantity such that 𝑞′(𝑡) = 𝑑(𝑡)𝑞(𝑡), hence:

𝑞𝑡𝑖+1
= 𝑞𝑡𝑖exp

(︂(︂
𝑑𝑡𝑖 +

1

6
(2𝑑′𝑡𝑖 + 𝑑′𝑡𝑖+1

)(𝑡𝑖+1 − 𝑡𝑖)

)︂
(𝑡𝑖+1 − 𝑡𝑖)

)︂
The term in the exponential is the product between

• the time span (𝑡𝑖+1 − 𝑡𝑖), and

• a term
(︁
𝑑𝑡𝑖 +

1
6 (2𝑑

′
𝑡𝑖 + 𝑑′𝑡𝑖+1

)(𝑡𝑖+1 − 𝑡𝑖)
)︁

which is the average of the quadratic function over the period.

Note that given the practical constants involved (𝑑 is typically on the order of 100 to 101 cNp / year), the exponential
can be approximated by 𝑒𝑥𝑝(𝑥) = 1 + 𝑥.

2.1.4 Oracles

An oracle feed provides the tez-denominated value of the external index (e.g. 1 CHF), which we label 𝑡𝑧𝑡. The contract
providing the oracle feed should be reliable: for some external measures it might be advisable for that contract to give
Checker the median of three or more externally-observed values.

Filtered oracle feeds

Protected index

The feed of external oracle values is itself filtered.

We define the protected index, ̂︀𝑡𝑧𝑡, as:

̂︀𝑡𝑧𝑡𝑖 = ̂︀𝑡𝑧𝑡𝑖−1
× clamp

(︃
𝑡𝑧𝑡𝑖̂︀𝑡𝑧𝑡𝑖−1

, 𝑒−𝜖(𝑡𝑖−𝑡𝑖−1), 𝑒𝜖(𝑡𝑖−𝑡𝑖−1)

)︃

6 Chapter 2. Design

https://en.wikipedia.org/wiki/Neper

Checker, Release 0.1alpha

where clamp(𝑥,min,max) returns x constrained to the inclusive range from min to max.

We suggest a value of 𝜖 = 0.05 cNp/min – that’s about 72 cNp / day, so the filter can catch up to a 2x or 0.5x move
in 24 hours, and a 3% move in an hour.̂︀𝑡𝑧𝑡 is like the suspension of a car, it lags behind large moves, but is insensitive to spikes (real or fabricated).

In addition, we define the following prices

Minting index

The feed 𝑡𝑧𝑚𝑖𝑛𝑡𝑖𝑛𝑔
𝑡 = max(𝑡𝑧𝑡, ̂︀𝑡𝑧𝑡) is the maximum of 𝑡𝑧𝑡 and ̂︀𝑡𝑧𝑡.

Liquidation index

The feed 𝑡𝑧𝑙𝑖𝑞𝑢𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑡 = min(𝑡𝑧𝑡, ̂︀𝑡𝑧𝑡) is the miminum of 𝑡𝑧𝑡 and ̂︁𝑡𝑧𝑡.
Changing oracle feeds

The Oracle feed is initially fixed. We strongly recommend that the current Tezos protocol be upgraded to allow
bakers to signal in each block support for adding or removing oracles.

Target

The Checker system includes a uniswap-like CFMM (Constant Function Market Maker) exchange contract which
gives an indication of the price of kit in tez, 𝑘𝑡 with unit tez kit−1. The target can be computed as

𝑝𝑡 = 𝑞𝑡𝑡𝑧𝑡/𝑘𝑡

For example: suppose ⎧⎨⎩
𝑡𝑧𝑡 = 0.36 xtz
𝑘𝑡 = 0.3 xtz/kit
𝑞𝑡 = 0.9 kit−1

Then 𝑝𝑡 = 1.08, and since 𝑝𝑡 > 1, we can stay that kit is too cheap.

We do not need to filter the target feed as it only affects the drift in a bounded way that is, even if 𝑡𝑧𝑡 experiences wild,
short lived swing, it will not have a major effect on the system.

2.2 Algorithmic control

Consider the measure of imbalance

log 𝑝𝑡 = log(𝑞𝑡𝑡𝑧𝑡/𝑘𝑡).

All logarithm values are expressed in cNp or centinepers (for small values, a centineper is almost the same as a
percentage point so you can safely read 2 cNp and 2% as roughly equivalent).

2.2. Algorithmic control 7

https://uniswap.org/whitepaper.pdf

Checker, Release 0.1alpha

We algorithmically define the drift 𝑑𝑡 via its rate of change, noted 𝑑′𝑡. 𝑑
′
𝑡 is computed, at any clock tick t, based on the

imbalance: ⎧⎨⎩
| log 𝑝𝑡| < 0.5 cNp ⇒ 𝑑′𝑡 = 0

0.5 cNp ≤ | log 𝑝𝑡| < 5 cNp ⇒ 𝑑′𝑡 = sign(log 𝑝𝑡)0.01 cNp/day2

5 cNp ≤ | log 𝑝𝑡| ⇒ 𝑑′𝑡 = sign(log 𝑝𝑡)0.05 cNp/day2

It’s easy to imagine models where 𝑑′𝑡 depends continuously on log 𝑝𝑡 but our intuition is that such models tend to be
less robust than simple bang-bang models such as the one above.

Two remarks: 1. The unit of 𝑑𝑡 is cNp/day because it represents the growth or shrinking of 𝑞𝑡 per unit of time.
Therefore, it is natural that the unit of 𝑑′𝑡 is in cNp/day2. To get a better intuition of those quantities suppose drift
starts at 0 cNp / day and imbalance stays below -0.5 cNp but above -5 cNp for a month, the drift would grow to 0.3
cNp / day, and 𝑞𝑡 would increase by 4.65 cNp (about 4.76%). If imbalance stayed below 5 cNp for a month, the drift
would go from 0 cNp / day to 1.5 cNp / day in a month, increasing 𝑞𝑡 by 23.25 cNp (about 26.18%).

2. When compared to MakerDAO this is essentially setting a rate of increase or decrease for a (potentially nega-
tive!) stability fee programmatically, based on prices, as opposed to votes.

2.3 Burrows

Burrows are a form of “deposit account”, and each is an independent smart contract, originated by the Checker con-
tract.

A burrow serves to hold tez collateral against which kits may be minted and subsequently burned, subject to certain
restrictions. Collateral may generally be added and withdrawn over time, again subject to restrictions. Kits minted
from a burrow (“outstanding kits”) become part of the burrow owner’s personal kit balance, and they may be spent
or transferred freely. A corresponding portion of the collateral in the burrow will then be locked up, and it cannot be
withdrawn unless enough kits are later returned to the burrow and burned. Burrows are similar to CDPs in MakerDAO.

Burrow creation deposit: When a burrow is created, its owner must pay a burrow creation deposit, which won’t count
towards the collateral and is only there to reward people marking the burrow for liquidation. If the owner closes the
burrow, the deposit is recovered with it. We propose to set the deposit at 1 tez.

Since the burrow holds tez on the owner’s behalf, the owner may optionally specify a delegate for that balance.

2.3.1 Burrowing and overburrowing

Burrowing is the act of minting kits out of a burrow, and the kits accrue to an outstanding kits balance. To avoid
overpopulation of kits, the burrowing is limited depending on the number of tez in the burrow in relation to the
outstanding kit balance. Generally, kits can be minted so long as the tez in the burrow is at least 𝑓𝑚𝑖𝑛𝑡𝑖𝑛𝑔 times the
number of outstanding kits multiplied by 𝑞𝑡 multiplied by 𝑡𝑧𝑚𝑖𝑛𝑡𝑖𝑛𝑔

𝑡 . We propose 𝑓𝑚𝑖𝑛𝑡𝑖𝑛𝑔 = 2.1.

Assume for instance 𝑡𝑧𝑚𝑖𝑛𝑡𝑖𝑛𝑔
𝑡 = 0.36xtz and 𝑞𝑡 = 1.015. To mint 10 kits, one would require 2.1×10×0.36×1.015 =

7.673 xtz in the burrow. When further kits can no longer be burrowed due to insufficient tez collateral, the burrow is
said to be overburrowed.

Even once further minting is blocked due to overburrowing, market fluctuations in kit and tez values may lead to
a situation in which the ratio of kits outstanding versus tez in the burrow exceeds a higher safety threshold of
𝑓 𝑙𝑖𝑞𝑢𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑞𝑡𝑡𝑧

𝑙𝑖𝑞𝑢𝑖𝑑𝑎𝑡𝑖𝑜𝑛
𝑡 , in which case the burrow is considered under-collateralized and can be marked for liq-

uidation, as we’ll see later.

8 Chapter 2. Design

Checker, Release 0.1alpha

2.3.2 Burrow fee

While a burrow has outstanding kits, it continuously incurs a compounding burrow fee. This is an amount added to
the outstanding kit balance, but this amount does not represent kits given to the burrow owner. The result of this is that
over time slightly more kits are required to be burned in a burrow in order to release its collateral.

A 0.5 cNp fee per year is assessed and implicitly credited to a ctez / kit CFMM exchange contract which is described
below in this document. It’s important that this is done implicitly, i.e. whenever the CFMM contract is called, it knows
exactly what its balance is.

Note: it might seem at first like the fee is “paid” for, individually, by the burrow creators but, from an economic
perspective, it is equally valid to view it as being paid for, collectively, by all the kit holders, as the fee can be offset
by an adjustment of the drift.

2.3.3 Imbalance adjustment

The imbalance adjustment takes the form of either an adjustment fee or an adjustment bonus. The exact amount of the
fee (or bonus) is set depending on the imbalance between the number of kits in circulation and the outstanding number
of kits that would need to be burned to close all burrows.

In general those numbers should be equal but, imperfect liquidations could cause the numbers to become different.
(Imperfect liquidations happen when a burrow is completely liquidated, but not all of the outstanding kits can be
recovered: there is an outstanding balance of kits that were minted out of the burrow, but there are no more tez left
in that burrow.) If the former (outstanding kits) is greater than the latter (kits in circulation), the adjustment fee is
increased and the extra kits are burned. If some burrows are left unfilled, this restores the balance.

The adjustment fee / bonus is capped at ±5 cNp per year, is proportional to the imbalance in cNp and saturates when
the imbalance hits 20%.

This means that if the system were to end up being undercollateralized, the drift would become lower and dilute
the value of the kit, whereas if the system were to end up being overcollateralized the drift would become higher
concentrating the value of the kit.

2.4 Liquidation

In situations where a burrow is overburrowed and, furthermore, beyond the liquidation threshold, it can be marked for
liquidation by anyone. Liquidation is the process of selling some or all of its tez collateral at auction for kit, which
will be burned to reduce the burrow’s excessive outstanding kit balance.

There is a reward for marking a burrow for liquidation, equal to 0.1 cNp of the tez collateral plus the burrow creation
deposit.

Note that we rely directly on the target and not any kit / tez price we might observe on-chain. The reason is that, kits
being off target should not cause a hardening or loosening of burrowing rules.

Once a burrow is marked for liquidation, one can determine the amount of tez that needs to be sold for kit at the
current 𝑡𝑧𝑚𝑖𝑛𝑡𝑖𝑛𝑔

𝑡 price in order to return the burrow in a state where any outstanding kits could have just been minted
(including refilling the burrow creation deposit, in case another liquidation is later needed). If there would not be
enough tez to refill the creation deposit, everything is liquidated and the burrow is simply closed.

That portion of the tez collateral is sent to a queue for auction and the burrow is assigned a corresponding lot number.
As the queue receives tez to sell for kit, it chops them up in increments of 𝑡𝑒𝑧_𝑏𝑎𝑡𝑐ℎ. We suggest 𝑡𝑒𝑧_𝑏𝑎𝑡𝑐ℎ =
10, 000 xtz. Each lot is given a lot number which is held by the burrows which contributed the tez to the lot.

Portions of a burrow’s tez collateral may be queued in multiple lots, due either to splitting of large amounts across lots,
or to successive partial liquidations.

2.4. Liquidation 9

Checker, Release 0.1alpha

2.5 Liquidation auction

If there are any lots of tez collateral waiting to be sold for kit, Checker starts an open, ascending bid auction. There
is a reserve price set using 𝑘𝑡 which declines exponentially over time as long as no bid as been placed. Once a bid
is placed, the auction continues. Every bid needs to improve over the previous bid by at least 0.33 cNp and adds the
longer of 20 blocks or 20 minutes, to the time before the auction expires.

When liquidating, we liquidate 10% more than we are currently computing. We call a liquidation “warranted” when
the burrow would have been targettable for liquidation had we used, retrospectively, the average price obtained in the
liquidation auction. Once the liquidation price is known (after an auction) we look at whether that liquidation was
“warranted” — that is, it was proven to be necessary. If it was, we destroy 10% of the kit proceeds of the auction.
These 10% do not go towards reducing the outstanding kit balance of the burrow, they are just gone, for everyone. If
it turned out that a liquidation was not warranted, all 100% of the liquidation proceeds are credited to the burrow.

2.6 CFMM

There is a CFMM (Constant Function Market Maker) exchange facility attached to the checker contract. It is much like
a standard CFMM contract (including the ability to mint and redeem tokens representing a contribution of liquidity
to the contract) except that its balance in kit increases over time as kits are minted out of burrows to pay for part of
the burrowing fee. This balance is adjusted any time the checker contract is called, looking back at the last time the
contract was called and calculating the fee incurred in between.

The contract’s implied ctez/kit price is used as part of the parameter calculations.

10 Chapter 2. Design

CHAPTER

THREE

FUNCTIONAL SPECIFICATION

3.1 Checker

3.1.1 Working with burrows

Burrows are implicitly associated with their owner via the sender’s address upon their creation. A sender can operate
multiple burrows over time: owners are expected to identify each burrow uniquely with an arbitrary numeric ID they
supply. These numbers need not be contiguous.

Create a burrow

Create and return a new burrow containing the supplied amount of FA2 token as collateral, minus the creation deposit.
Fails if the collateral given is not enough to cover the creation deposit, if the sender does not own said amount of
collateral, or if Checker is not authorized as an operator for the sender’s collateral.

Before calling:

• In all cases, you will need to ensure that Checker is authorized in the collateral’s FA2 contract as an
operator.

• For collateral_type=tez, wtez is used as collateral in Checker. Please refer to the wtez documen-
tation for depositing tez and getting wtez tokens: [Deposit tez].

create_burrow: (pair (pair nat (option key_hash)) nat)

Parameter Field Type Description
id nat An arbitrary number to identify the burrow among the sender’s burrows
delegate option key_hash An optional delegate for the created burrow contract
tok nat The amount of token supplied as collateral (including creation deposit)

Deposit collateral in a burrow

Deposit an amount of FA2 token as collateral to a burrow. Fails if the burrow does not exist, if the sender does not own
said collateral, or if Checker is not authorized as an operator for the sender’s collateral.

Before calling:

• In all cases, you will need to ensure that Checker is authorized in the collateral’s FA2 contract as an
operator.

• For collateral_type=tez, wtez is used as collateral in Checker. Please refer to the wtez documen-
tation for depositing tez and getting wtez tokens: [Deposit tez].

11

Checker, Release 0.1alpha

deposit_collateral: (pair nat nat)

Parameter Field Type Description
id nat The sender’s ID for the burrow in which to deposit the collateral tokens
tok nat The amount of token supplied to be used as collateral

Withdraw collateral from a burrow

Withdraw an amount of collateral from a burrow. Fails if the burrow does not exist, if this action would overburrow it,
or if the sender is not the burrow owner.

withdraw_collateral: (pair nat nat)

Parameter Field Type Description
id nat The sender’s ID for the burrow from which to withdraw the collateral tokens
amount nat The amount of collateral to withdraw

Mint kit

Mint an amount of kit from a specific burrow. Fails if the burrow does not exist, if there is not enough collateral, or if
the sender is not the burrow owner.

mint_kit: (pair nat nat)

Parameter Field Type Description
id nat The sender’s ID for the burrow in which to mint the kit
amount nat The amount of kit to mint

Burn kit

Deposit/burn an amount of kit to a burrow. If there is excess kit, simply credit it back to the burrow owner. Fails if the
sender does not own the specified amount of kit, if the burrow does not exist, or if the sender is not the burrow owner.

burn_kit: (pair nat nat)

Parameter Field Type Description
id nat The sender’s ID for the burrow in which to burn the kit
amount nat The amount of kit to burn

Activate an inactive burrow

Activate a currently inactive burrow. Fails if the burrow does not exist, if the burrow is already active, if the amount of
collateral given is not enough to cover the creation deposit, if the sender does not own said collateral, or if Checker is
not authorized as an operator for the sender’s collateral.

Before calling:

• In all cases, you will need to ensure that Checker is authorized in the collateral’s FA2 contract as an
operator.

• For collateral_type=tez, wtez is used as collateral in Checker. Please refer to the wtez documen-
tation for depositing tez and getting wtez tokens: [Deposit tez].

12 Chapter 3. Functional Specification

Checker, Release 0.1alpha

activate_burrow: (pair nat nat)

Parameter Field Type Description
id nat The sender’s ID for the burrow to activate
tok nat The amount of token supplied as collateral (including creation deposit)

Deactivate a burrow

Deactivate a currently active burrow. Fails if the burrow does not exist, if it is already inactive, if it is overburrowed, if
it has kit outstanding, or if it has collateral sent off to auctions. If deactivation is successful, emits an FA2 transfer to
the given address.

deactivate_burrow: (pair nat address)

Parameter Field Type Description
id nat The sender’s ID for the burrow to deactivate
receiver address The address to send the burrow’s collateral and creation deposit to

Perform burrow maintenance

Perform maintenance tasks on a burrow (i.e., update it’s outstanding kit according to the system changes that have
taken place since the last time the burrow was operated on). Fails if the burrow does not exist.

touch_burrow: (pair address nat)

Parameter Field Type Description
owner address The burrow owner’s address
id nat The sender’s ID for the burrow to deactivate

Set the delegate for a burrow

Set the delegate of a burrow. Fails if if the sender is not the burrow owner or if the deployed checker instance does not
use tez as collateral.

set_burrow_delegate: (pair nat (option key_hash))

Parameter Field Type Description
id nat The sender’s ID for the burrow
delegate option key_hash The key_hash of the new delegate’s address, or none

3.1.2 CFMM Exchange

Buy kit using cfmm token

Buy some kit from the CFMM contract in exchange for the FA2 token used in the cfmm. Fails if Checker is not
authorized as an operator for the sender’s cfmm token, if the desired amount of kit cannot be bought, or if the deadline
has passed.

Before calling:

3.1. Checker 13

Checker, Release 0.1alpha

• In all cases, you will need to ensure that Checker is authorized in the cfmm token’s FA2 contract as an
operator.

• For collateral_type=tez, wctez is used as the cfmm token. Please refer to the wctez documentation
for depositing ctez and getting wctez tokens: [Mint tokens].

buy_kit: (pair (pair nat nat) timestamp)

Parameter Field Type Description
ctok nat An amount of cfmm token to be sold for kit
kit nat The minimum amount of kit expected to be bought
deadline timestamp The deadline for the transaction to be valid

Sell kit for cfmm token

Sell some kit in exchange for the FA2 token used in the cfmm. Fails if the sender does not own the specified amount
of kit, if the desired amount of cfmm token cannot be bought, or if the deadline has passed.

sell_kit: (pair (pair nat nat) timestamp)

Parameter Field Type Description
kit nat The amount of kit to be sold
ctok nat The minimum amount of cfmm token expected to be bought
deadline timestamp The deadline for the transaction to be valid

Provide liquidity

Deposit some cfmm token and kit for liquidity in exchange for receiving liquidity tokens. If the given amounts do
not have the right ratio, the CFMM contract keeps all the cfmm token given and as much of the given kit as possible
with the right ratio, and returns the leftovers, along with the liquidity tokens. Fails if Checker is not authorized as an
operator for the sender’s cfmm token, or if the sender does not own the specified amount of kit.

Before calling:

• In all cases, you will need to ensure that Checker is authorized in the cfmm token’s FA2 contract as an
operator.

• For collateral_type=tez, wctez is used as the cfmm token. Please refer to the wctez documentation
for depositing ctez and getting wctez tokens: [Mint tokens].

add_liquidity: (pair (pair nat nat) nat timestamp)

Parameter Field Type Description
ctok nat The amount of cfmm token to supply as liquidity
kit nat The maximum amount of kit to supply as liquidity
min_tokens nat The minimum number of liquidity tokens expected to be bought
deadline timestamp The deadline for the transaction to be valid

14 Chapter 3. Functional Specification

Checker, Release 0.1alpha

Withdraw liquidity

Redeem some liquidity tokens in exchange for cfmm tokens and kit in the right ratio. Fails if the sender does not own
the specified liquidity tokens.

remove_liquidity: (pair (pair nat nat) nat timestamp)

Parameter Field Type Description
amount nat The number of liquidity tokens to redeem
ctok nat The minimum amount of cfmm token expected
kit nat The minimum amount of kit expected
deadline timestamp The deadline for the transaction to be valid

3.1.3 Liquidation Auctions

Mark a burrow for liquidation

Mark a burrow for liquidation. Fails if the burrow does not exist, or if it is not a candidate for liquidation. If the
operation is successful, a payment is made to Tezos.sender with the liquidation reward.

mark_for_liquidation: (pair address nat)

Parameter Field Type Description
owner address The burrow owner’s address
id nat The sender’s ID for the burrow to mark for liquidation

Process completed liquidation slices

Process a number of liquidation slices (i.e., amounts of collateral that have been auctioned off as part of completed
liquidation auctions). Fails if any of the identifiers given are not valid. Pointers to slices of incomplete auctions are
ignored.

touch_liquidation_slices: (list nat)

Parameter Field Type Description
slice_ptrs list nat The unique identifiers of the slices to be processed

Cancel pending liquidation slices

Cancel the liquidation of a liquidation slice. Fails if the sender is not the burrow owner, if the slice is part of an ongoing
or completed auction, or if the burrow is currently overburrowed.

cancel_liquidation_slice: nat

Parameter Field Type Description
slice_ptr nat The unique identifier of the slice whose liquidation is to be cancelled

3.1. Checker 15

Checker, Release 0.1alpha

Bid in the current liquidation auction

Bid in the current liquidation auction. Fails if the sender does not own the specified amount of kit, if there is no
ongoing auction, or if the bid is too low.

liquidation_auction_place_bid: (pair nat nat)

Parameter Field Type Description
auction_id nat The unique identifier of the currently ongoing liquidation auction
kit nat The amount of kit to be bid

Claim the collateral from a winning auction bid

Claim the rewards of a completed liquidation auction. Fails if the sender is not the auction winner, if the auction is
still ongoing, or if the completed auction still has unprocessed liquidation slices. If the operation is successful, an FA2
transfer of the collateral is made to Tezos.sender with the auction winnings.

liquidation_auction_claim_win: nat

Parameter Field Type Description
auction_id nat The unique identifier of the completed auction

3.1.4 Maintenance entrypoints

Perform Checker internal maintenance

Perform housekeeping tasks on the contract state. This includes:

1. updating the system parameters;

2. accruing burrowing fees to the cfmm;

3. updating auction-related info (completing an old / starting a new auction);

4. processing a limited number of liquidation slices from completed auctions;

5. updating the index by consulting the oracle.

This operation credits an amount of kit (that is a function of time passed since the last time touch was called) to
Tezos.sender.

touch: unit

Parameter Field Type Description
unit unit ()

16 Chapter 3. Functional Specification

Checker, Release 0.1alpha

Apply an Oracle update

Internal. Receive a price update from the registered oracle.

receive_price: pair nat nat

Parameter Field Type Description
price pair nat nat The current index, as a pair of the numerator and the denominator

3.1.5 FA2 Interface

Query balance

balance_of: (pair (list %requests (pair (address %owner) (nat %token_id)))
(contract %callback

(list (pair (pair %request (address %owner) (nat %token_id))
→˓(nat %balance)))))

Update operators

update_operators: (list (or (pair %add_operator (address %owner) (address %operator)
→˓(nat %token_id))

(pair %remove_operator (address %owner) (address
→˓%operator) (nat %token_id))))

3.1.6 FA2 Views

Checker exposes a number of FA2 views in its contract metadata. Standard token views are provided, as are a number
of custom views provided for integration convenience, e.g. for use by front-end applications.

Standard FA2 views

The following standard FA2 views are supported:

• get_balance

• total_supply

• all_tokens

• is_operator

3.1. Checker 17

Checker, Release 0.1alpha

Estimate yield when buying kit with cfmm tokens

Get the maximum amount of kit that can be expected to be received for the given amount of cfmm token (when calling
buy_kit), based on the current market price.

buy_kit_min_kit_expected : nat -> nat

Parameter Field Type Description
ctok nat The amount of cfmm token to be sold to the cfmm

Estimate yield when selling kit for cfmm tokens

Get the maximum amount of cfmm token that can be expected to be received for the given amount of kit (when calling
sell_kit), based on the current market price.

sell_kit_min_ctok_expected : nat -> nat

Parameter Field Type Description
kit nat The amount of kit to be sold to the cfmm

Estimate kit requirements when adding liquidity

Get the minimum amount of kit that needs to be deposited when adding liquidity for the given amount of cfmm token
(when calling add_liquidity), based on the current market price.

add_liquidity_max_kit_deposited : nat -> nat

Parameter Field Type Description
ctok nat The amount of cfmm token to be given as liquidity

Estimate yield when adding liquidity

Get the maximum amount of the liquidity token that can be expected to be received for the given amount of cfmm
token (when calling add_liquidity), based on the current market price.

add_liquidity_min_lqt_minted : nat -> nat

Parameter Field Type Description
ctok nat The amount of cfmm token to be given as liquidity

Estimate cfmm token yield when removing liquidity

Get the maximum amount of cfmm token that can be expected to be received for the given amount of liquidity token
(when calling remove_liquidity), based on the current market price.

remove_liquidity_min_ctok_withdrawn : nat -> nat

Parameter Field Type Description
liquidity nat The amount of liquidity token to be returned to the cfmm

18 Chapter 3. Functional Specification

Checker, Release 0.1alpha

Estimate kit yield when removing liquidity

Get the maximum amount of kit that can be expected to be received for the given amount of liquidity token (when
calling remove_liquidity), based on the current market price.

remove_liquidity_min_kit_withdrawn : nat -> nat

Parameter Field Type Description
liquidity nat The amount of liquidity token to be returned to the cfmm

Find maximum kit that can be minted

Returns the maximum amount of kit that can be minted from the given burrow.

burrow_max_mintable_kit : pair address nat -> nat

Parameter Field Type Description
owner address The burrow owner’s address
id nat The sender’s ID for the burrow in question

Check whether a burrow is overburrowed

is_burrow_overburrowed : pair address nat -> bool

Parameter Field Type Description
owner address The burrow owner’s address
id nat The sender’s ID for the burrow in question

Check whether a burrow can be liquidated

is_burrow_liquidatable : pair address nat -> bool

Parameter Field Type Description
owner address The burrow owner’s address
id nat The sender’s ID for the burrow in question

Get details on the current liquidation auction

Fails if there is currently no liquidation auction.

current_liquidation_auction_details: unit -> view_current_liquidation_auction_details_result

Parameter Field Type Description
unit unit ()

3.1. Checker 19

Checker, Release 0.1alpha

3.1.7 Deployment

Deploy a lazy function

Prior to sealing, the bytecode for each lazy function must be deployed.

deployFunction: (pair int bytes)

Deploy metadata

Prior to sealing, the bytecode for all metadata must be deployed.

deployMetadata: bytes

Seal the contract and make it ready for use

sealContract: (pair (pair (pair address address) address) address)

3.2 wtez

3.2.1 Overview

wtez is a wrapper contract which issues wtez FA2 tokens which are always equal in value to tez. It is designed for
use cases where users wish to use tez collateral in Checker. In this case Checker deals with the wtez FA2 tokens
instead of with tez directly.

Each account can have up to exactly one vault contract associated with it which holds the tez deposited from that
account.

3.2.2 Deposits and withdrawals

Deposit tez

Deposit the amount of tez in the transaction to the sender’s vault in exhange for wtez tokens. If the account does
not already have a vault contract an operation will be emitted originating it.

deposit: unit

Parameter Field Type Description
unit unit ()

20 Chapter 3. Functional Specification

Checker, Release 0.1alpha

Withdraw tez

Withdraw the specified amount of tez from the sender’s vault in exhange for wtez tokens. Fails if amount is greater
than the sender’s wtez balance. If the account does not already have a vault contract an operation will be emitted
originating it.

withdraw: nat

Parameter Field Type Description
amount nat The amount of tez to withdraw

Set the delegate for a vault

Set the delegate of the sender’s vault. If the account does not already have a vault contract an operation will be emitted
originating it.

set_delegate: (pair nat (option key_hash))

Parameter Field Type Description
delegate option key_hash The key_hash of the new delegate’s address, or none

3.2.3 FA2 Interface

Query balance

balance_of: (pair (list %requests (pair (address %owner) (nat %token_id)))
(contract %callback

(list (pair (pair %request (address %owner) (nat %token_id))
→˓(nat %balance)))))

Update operators

update_operators: (list (or (pair %add_operator (address %owner) (address %operator)
→˓(nat %token_id))

(pair %remove_operator (address %owner) (address
→˓%operator) (nat %token_id))))

Transfer tokens

transfer: (list %transfer
(pair

(address %from_)
(list %txs

(pair
(address %to_)
(pair

(nat %token_id)
(nat %amount)

)

(continues on next page)

3.2. wtez 21

Checker, Release 0.1alpha

(continued from previous page)

)
)

)
)

3.2.4 Internal entrypoints

The following entrypoints are used internally in wtez and cannot be called by anyone accept the wtez contract itself.

Send tez to a vault

Internal. Calls the specified vault’s %vault_receive_tez entrypoint with the specified amount of mutez. Fails
if the sender is not the wtez contract.

call_vault_receive_tez: (pair address tez)

Parameter Field Type Description
vault_address address The address of the vault
amount mutez The amount of mutez to send from the main contract to the vault

Send tez from a vault to a contract

Internal. Calls the specified vault’s %vault_send_tez_to_contract entrypoint, sending the specified amount
of mutez from the vault to the provided contract address. Fails if the sender is not the wtez contract.

call_vault_send_tez_to_contract: (pair address (pair tez address))

Parameter Field Type Description
vault_address address The address of the vault
amount tez The amount of mutez to send from the main contract to the vault
recipient address The address of the contract which will receive the mutez

Send tez from a vault to another vault

Internal. Calls the specified vault’s %vault_send_tez_to_vault entrypoint, sending the specified amount of
mutez. from the vault to the provided vault address. Fails if the sender is not the wtez contract.

call_vault_send_tez_to_vault: (pair address (pair tez address))

Parameter Field Type Description
vault_address address The address of the vault
amount tez The amount of mutez to send from the main contract to the vault
recipient address The address of the vault which will receive the mutez

22 Chapter 3. Functional Specification

Checker, Release 0.1alpha

Set a vault’s delegate

Internal. Calls the specified vault’s %vault_set_delegate entrypoint with the provided delegate. Fails if the
sender is not the wtez contract.

call_vault_set_delegate: (pair address (option key_hash))

Parameter Field Type Description
vault_address address The address of the vault
delegate option key_hash An optional delegate for the vault contract

3.3 wctez

3.3.1 Overview

wctez is a wrapper contract which issues wctez FA2 tokens in exhange for ctez tokens. It was designed for use in
Checker’s CFMM which only works with FA2 tokens since ctez itself only provides an FA1.2 interface.

Each wctez token is always worth exactly one ctez token.

3.3.2 Minting and redeeming tokens

Mint tokens

Mint wctez tokens by transfering the corresponding amount of ctez tokens from the sender to the contract. Fails
if the contract is not approved to spend the specified amount of ctez tokens on the sender’s behalf or if the sender’s
ctez balance is less than the specified amount.

Before calling:

• In order to mint wctez:

– You must already have some ctez. This is generally done by calling ctez’s %create entrypoint
to create an oven then calling its %mint_or_burn entrypoint to mint ctez. Please refer to the ctez
project for more details.

– You must also approve wctez to spend the specified amount of ctez by calling ctez’s FA1.2 contract’s
%approve entrypoint.

mint: unit

Parameter Field Type Description
amount nat The amount of ctez tokens to transfer to the contract

3.3. wctez 23

https://github.com/tezos-checker/ctez
https://github.com/tezos-checker/ctez

Checker, Release 0.1alpha

Redeem tokens

Redeem the specified amount of wctez tokens for the same amount of ctez tokens. Fails if the sender’s wctez
balance is less than the specified amount.

withdraw: nat

Parameter Field Type Description
amount nat The amount of wctez tokens to redeem

3.3.3 FA2 Interface

Query balance

balance_of: (pair (list %requests (pair (address %owner) (nat %token_id)))
(contract %callback

(list (pair (pair %request (address %owner) (nat %token_id))
→˓(nat %balance)))))

Update operators

update_operators: (list (or (pair %add_operator (address %owner) (address %operator)
→˓(nat %token_id))

(pair %remove_operator (address %owner) (address
→˓%operator) (nat %token_id))))

Transfer tokens

transfer: (list %transfer
(pair

(address %from_)
(list %txs

(pair
(address %to_)
(pair

(nat %token_id)
(nat %amount)

)
)

)
)

)

24 Chapter 3. Functional Specification

CHAPTER

FOUR

OPERATIONAL DESCRIPTIONS

This section contains a breakdown of the logic and calculations in various aspects of Checker.

4.1 System Parameters

A operational description of Checker’s internal parameters, and operations on them. NOTE: here we focus primarily
on the specifics of the calculations; for the meaning of the concepts, see Design.

4.1.1 State

• q: of type (1 / kit).

• index: of type tez.

• protected_index: of type tez.

• target: TODO: said dimensionless, but I think tez/kit? Hmmm. I have to re-check the units of measure.

• drift_derivative

• drift

• outstanding_kit: approximation of the total amount of kit that would be currently required to close all
burrows.

• circulating_kit: approximation of the total amount of kit that is currently in circulation.

• last_touched: the last time the parameters were touched.

And two additional indices, one used in the calculation of burrowing fees and one in the calculation of the imbalance
adjustment:

• burrow_fee_index

• imbalance_index

25

Checker, Release 0.1alpha

4.1.2 Initialization

We currently initialize checker with the following parameters:

q = 1
index = 1xtz
protected_index = 1xtz
target = 1
drift = 0
drift_derivative = 0
outstanding_kit = 0kit
circulating_kit = 0kit
last_touched = now
burrow_fee_index = 1
imbalance_index = 1

4.1.3 Price API

tz_minting = max index protected_index (in tez)
tz_liquidation = min index protected_index (in tez)

To calculate the current prices in (tez/kit), we multiply with the current quantity:

minting_price = q * tz_minting
liquidation_price = q * tz_liquidation

Note

The definition of tz_minting and tz_liquidation implies that at any given moment, tz_minting >=
tz_liquidation > 0. Combined with fminting > fliquidation, we have that

tz_minting * fminting > tz_liquidation * fliquidation

which is useful in liquidation logic (see burrow-state-liquidations.md).

4.1.4 Adjustment index

The adjustment index, as required by burrowing logic, can be calculated from the system parameters as the product of
the burrow fee index and the imbalance index:

adjustment_index = burrow_fee_index * imbalance_index

26 Chapter 4. Operational descriptions

Checker, Release 0.1alpha

4.1.5 Touching

Touching the system parameters has the effect of updating all aforementioned fields, and calculating the burrowing
fees that need to be accrued to the cfmm sub-contract. This is done under the assumption that we have available the
current time now, the current index index_now (calculated by the medianizer), and the current price of kit in tez
kit_in_tez_now (calculated by the cfmm sub-contract). In fact, the cfmm sub-contract gives us the one calculated
at the end of the last block, to make manipulation a little harder. We update each field:

last_touched

Update the timestamp from the last time it was touched to now

new_last_touched = now

index

Update the index from the last time the parameters were touched to the current one

new_index = index_now

protected_index

Update the protected index, by multiplying it with a bounded factor:

new_protected_index = old_protected_index * clamp (current_index / protected_index,
→˓low, high)

where low and high depend on how much time has passed since the last time the parameters were touched, effectively
limiting how fast protected_index can change:

low = exp (-epsilon * (now - last_touched))
high = exp (+epsilon * (now - last_touched))

NOTE: exp (x) = 1 + x here; we expect the contract to be touched rather frequently, which keeps the exponent
rather small, which makes this a good approximation of exp.

drift_derivative

For the calculation of the derivative of drift, drift_derivative, we only use the last-observed target (TODO:
show how we get from the original formula with the logarithms to this?) We calculate as follows:

new_drift_derivative =
-0.0005 / (secs_in_a_day ^ 2) , if target <= exp (-high_

→˓bracket)
-0.0001 / (secs_in_a_day ^ 2) , if exp (-high_bracket) < target <= exp (-low_

→˓bracket)
0 , if exp (-low_bracket) < target < exp (low_

→˓bracket)
0.0001 / (secs_in_a_day ^ 2) , if exp (low_bracket) <= target < exp (high_

→˓bracket)
0.0005 / (secs_in_a_day ^ 2) , if exp (high_bracket) <= target

4.1. System Parameters 27

Checker, Release 0.1alpha

drift

For the calculation of the current drift, we use use the following formula:

new_drift = old_drift + (1/2) * (old_drift_derivative + new_drift_derivative) * (now -
→˓ last_touched)

q

For the calculation of the current quantity q, we use the following formula:

new_q = old_q

* exp (
(old_drift + (1/6) * ((2 * old_drift_derivative) + new_drift_derivative) *

→˓(now - last_touched))

* (now - last_touched)
)

NOTE: exp (x) = 1 + x here; TODO: not sure if the exponent is small enough for this to be a good approxima-
tion.

target

new_target = new_q * (new_index / kit_in_tez_now)

burrow_fee_index

The burrow fee index is updated linearly on the number of seconds that have passed since the last time the parameters
were touched.

new_burrow_fee_index = old_burrow_fee_index

* (1 + burrow_fee_rate * (now - last_touched) / seconds_in_a_
→˓year)

imbalance_index

The imbalance index is also updated linearly on the number of seconds that have passed since the last time the param-
eters were touched

new_imbalance_index = old_imbalance_index

* (1 + imbalance_rate * (now - last_touched) / seconds_in_a_year)

but imbalance_rate varies, depending on the difference between old_outstanding_kit and
old_circulating_kit:

imbalance_rate =
clamp
(imbalance_scaling_factor * (circulating - outstanding) / circulating,

-imbalance_limit,
+imbalance_limit

)

28 Chapter 4. Operational descriptions

Checker, Release 0.1alpha

or, equivalently:

imbalance_rate =
min (imbalance_scaling_factor * (circulating - outstanding) / circulating,

→˓+imbalance_limit), if circulating >= outstanding
max (imbalance_scaling_factor * (circulating - outstanding) / circulating, -

→˓imbalance_limit), if circulating < outstanding

And in the edge cases the imbalance_rate is calculated as follows:

• if old_circulating_kit = 0 and old_outstanding_kit = 0 then imbalance_rate = 0.

• if old_circulating_kit = 0 and old_outstanding_kit > 0 then imbalance_rate =
-imbalance_limit. (the outstanding kit is infinitely greater than the circulating kit, so the rate is satu-
rated).

Intermediate outstanding_kit

In order to compute the updates for the two remaining fields (outstanding_kit and circulating_kit), we
first need to calculate the current amount of kit outstanding, taking into account the accrued burrowing fee, thus

outstanding_with_fees = old_outstanding_kit * (new_burrow_fee_index / old_burrow_fee_
→˓index)

Accrual to cfmm

The accrued burrowing fees are to be given to the cfmm sub-contract. The total amount we easily compute as

accrual_to_cfmm = outstanding_with_fees - old_outstanding

outstanding_kit

To obtain the updated outstanding_kit, we need to account for both the accrued burrowing fees, and the imbal-
ance adjustment

new_outstanding_kit = old_outstanding_kit

* (new_burrow_fee_index / old_burrow_fee_index)

* (new_imbalance_index / old_imbalance_index)

or equivalently

new_outstanding_kit = outstanding_with_fees * (new_imbalance_index / old_imbalance_
→˓index)

4.1. System Parameters 29

Checker, Release 0.1alpha

circulating_kit

Finally, to obtain the up-to-date circulating_kit, we just need to record the new kit in circulation, that is,
accrual_to_cfmm:

new_circulating_kit = old_circulating_kit + accrual_to_cfmm

NOTE: If the current timestamp is identical to that stored in the parameters, we do not perform any of the above.

4.1.6 Misc

• seconds_in_a_year = 31556952 (= (365 + 1/4 - 1/100 + 1/400) days * 24 * 60

* 60)

• seconds_in_a_day = 86400 (= 24 * 60 * 60)

• low_bracket = 0.005

• high_bracket = 0.05

• imbalance_scaling_factor = 0.75

• imbalance_limit = 0.05

4.2 Burrow State & Liquidation

An operational interpretation of the burrow state and operations on it.

4.2.1 State

• active: whether the burrow is supported by a creation deposit. If not, it’s considered “inactive”.

• address: the address of the contract holding the burrow’s collateral and creation deposit.

• collateral: the amount of tez stored in the burrow. Collateral that has been sent to auctions does not count
towards this amount; for all we know, it’s gone forever.

• outstanding_kit: the amount of kit that is outstanding from the burrow. This does not take into account
kit we expect to receive (to burn) from pending auctions. However, outstanding_kit does increase over
time, since the burrowing fee and the adjustment fee are added to it. So, effectively, before doing anything else
with a burrow, we update its state (“touch” it, see below).

• collateral_at_auction: the total amount of tez that has been sent to auctions from this burrow, to be
sold for kit.

• last_touched: the last time the burrow was touched.

• adjustment_index: the last observed adjustment index (at time last_touched).

30 Chapter 4. Operational descriptions

Checker, Release 0.1alpha

4.2.2 Touching

First thing to do before considering any of the things below is to update the state of the burrow, by touching it. The
effect of this is to

• Update the timestamp in the burrow to reflect the last time it was touched

new_last_touched = now

• To add accrued burrow and adjustment fee to its outstanding kit

new_outstanding = old_outstanding * (new_adjustment_index / old_adjustment_index)``

Note that if the current timestamp is identical to that stored in the burrow, we do not perform any of the above.

Each of the following operations implicitly touch the burrow (i.e., perform the above updates) before doing anything
else.

4.2.3 Is a burrow collateralized (i.e. not overburrowed)?

The burrow is considered collateralized if the following holds:

collateral >= outstanding * fminting * current_minting_price (1)

collateral here refers to the amount of tez stored in the burrow (collateral that has been sent to auctions does not
count towards this amount; for all we know, it’s gone forever).

outstanding_kit here refers to the accrued amount of kit that is outstanding from the burrow (kit we expect to
receive from pending auctions is not considered burned here, but still outstanding).

4.2.4 Is a burrow a candidate for liquidation?

The burrow cannot be marked for liquidation if the following holds:

collateral >= optimistic_outstanding * fliquidation * liquidation_price (2)

collateral here refers to the amount of tez stored in the burrow (collateral that has been sent to auctions does not
count towards this amount; for all we know, it’s gone forever).

outstanding_kit here refers to the accrued amount of kit that is outstanding from the burrow. In this case we opti-
mistically do take into account kit we expect to receive from pending auctions at the current_minting_price,
but pessimistically assume that these pending auctions are warranted (so we lose the liquidation penalty). That is

optimistic_outstanding = outstanding - (1 - liquidation_penalty) * (collateral_at_
→˓auction / current_minting_price)

4.2. Burrow State & Liquidation 31

Checker, Release 0.1alpha

4.2.5 How much collateral should we liquidate?

In general, in order to calculate how much should we auction off we assume that a) this auction is warranted, b) all
pending auctions are also warranted, c) the price we’ll get for everything is current_minting_price. a) and b)
effectively mean that we can only expect (1 - liquidation_penalty) returns from all auctions considered.
Formally:

• First, from auctioning we expect to get the current minting_price, so, if we send
collateral_to_auction and repaid_kit is received, we have

collateral_to_auction = repaid_kit * minting_price <=>
repaid_kit = collateral_to_auction / minting_price (3)

• Second, we assume that the auction is warranted (so we lose the liquidation penalty), thus

actual_repaid_kit = repaid_kit * (1 - liquidation_penalty) (4)

• Third, we consider all pending auctions to be successful, using the current minting_price, but also war-
ranted:

optimistic_outstanding = outstanding_kit - (1 - liquidation_penalty) *
→˓(collateral_at_auction / minting_price) (5)

• Fourth, under the above conditions we aim to bring the burrow into a state where it’s not oveburrowed anymore,
thus

collateral - collateral_to_auction >= (optimistic_outstanding - actual_repaid_
→˓kit) * fminting * minting_price (6)

Solving (3), (4), (5), and (6) the above gives us (7):

collateral_to_auction >=
(outstanding_kit * fminting * minting_price
- (1 - liquidation_penalty) * fminting * collateral_at_auction
- collateral
)
/
((1 - liquidation_penalty) * fminting - 1)

if ((1 - liquidation_penalty) * fminting - 1) > 0.

Say the burrow has been touched and all its parameters are up to date. Concerning liquidation, we have the following
cases:

Case 1: The burrow is not a candidate for liquidation

If (2) above holds then the burrow should not be liquidated. Send nothing to auctions and leave the burrow as is.

32 Chapter 4. Operational descriptions

Checker, Release 0.1alpha

Case 2: The burrow is a candidate for liquidation

If (2) above does not hold, then the burrow should be liquidated. Either partially, completely, or even be closed.

First things first, the actor who initiated liquidation should get their reward (burrow creation deposit + percentage of
collateral):

liquidation_reward = creation_deposit + (collateral * liquidation_reward_percentage)

That is, before we compute anything else, we leave the burrow with less collateral and without a creation deposit:

active = false
collateral = collateral - (collateral * liquidation_reward_percentage)

Now, depending on how much collateral remains, we have the following cases:

Case 2A: collateral < creation_deposit

We cannot replenish the creation deposit.

• We send all the remaining collateral to be auctioned off for kit.

• The burrow remains deactivated.

collateral = 0
collateral_at_auction = collateral_at_auction + collateral_to_auction

Case 2B: collateral >= creation_deposit

We can replenish the creation deposit, and this is the first thing we do:

collateral = collateral - creation_deposit

Now all that remains is to compute what should we auction off to bring the burrow to a state where “any outstanding
kits could have just been minted”. For that, we use the (7):

collateral_to_auction = ceil (
(outstanding_kit * fminting * minting_price
- (1 - liquidation_penalty) * fminting * collateral_at_auction
- collateral
)
/
((1 - liquidation_penalty) * fminting - 1)

)

• If collateral_to_auction < 0 or collateral_to_auction > collateral, then restoration
is impossible: liquidate the entire remaining collateral (Note that the resulting burrow can be targeted for liqui-
dation one last time (with the creation deposit being the only reward). Alternatively, we could (rather harshly)
liquidate the deposit too and close the burrow.):

active = true
collateral = 0
collateral_at_auction = collateral_at_auction + collateral

• Otherwise auction off exactly collateral_to_auction:

4.2. Burrow State & Liquidation 33

Checker, Release 0.1alpha

active = true
collateral = collateral - collateral_to_auction
collateral_at_auction = collateral_at_auction + collateral_to_auction

4.2.6 Was the liquidation warranted?

We sent 10% extra tez to be auctioned off as a penalty, but in case the actual selling price of the tez would not have
triggered a liquidation (retrospectively), we wish to bring that back to the burrow, if possible.

Calculations: In order to see whether liquidation should occur, we used equation (2) above, which we can rewrite as

liquidation_price <= collateral / (optimistic_outstanding * fliquidation) (3)

So, if (3) was satisfied, we wouldn’t have triggered a liquidation. If we assume that at the end we sent
collateral_to_auction to be auctioned off and we received repaid_kit for it, we have:

maximum_non_liquidating_price = collateral / (optimistic_outstanding * fliquidation)
real_price = collateral_to_auction / repaid_kit # derived from
→˓the auction outcome

If real_price <= maximum_non_liquidating_price then the liquidation was not warranted (i.e. the liq-
uidation price we used when calculating collateral_to_auction was off) and we wish to return the kit we
received from the auction in its entirety to the burrow:

real_price <= maximum_non_liquidating_price
collateral_to_auction / repaid_kit <= collateral / (fliquidation * optimistic_
→˓outstanding) <=>
collateral_to_auction * (fliquidation * optimistic_outstanding) <= repaid_kit *
→˓collateral <=>
collateral_to_auction * (fliquidation * optimistic_outstanding) / collateral <=
→˓repaid_kit <=>
repaid_kit >= collateral_to_auction * (fliquidation * optimistic_outstanding) /
→˓collateral

So, if the kit that the auction yields is more than

min_received_kit_for_unwarranted = collateral_to_auction * (fliquidation * optimistic_
→˓outstanding) / collateral

then this liquidation was unwarranted.

4.2.7 What if the liquidation was warranted?

When we send collateral_to_auction to an auction, we also send
min_received_kit_for_unwarranted so that—after the auction is over—we can determine whether
it was warranted. If it was warranted, then we wish to return the received kit in its entirety to the burrow. Otherwise
we burn 10% of the kit earnings.

The auction logic might end up splitting collateral_to_auction into parts (slices) that can be sold for different
prices; we perform the above check per slice.

collateral_to_auction = tez_1 + tez_2 + ... + tez_n

If we end up selling slice tez_i for kit_i, this part of the liquidation is considered unwarranted (and thus kit_i
is returned to the burrow) only if

34 Chapter 4. Operational descriptions

Checker, Release 0.1alpha

kit_i >= min_received_kit_for_unwarranted * (tez_i / collateral_to_auction) <=>
collateral_to_auction * kit_i >= min_received_kit_for_unwarranted * tez_i

4.2.8 Misc

• fminting > fliquidation

• minting_price >= liquidation_price

• liquidation_penalty = 10%

4.3 Liquidation Auctions

4.3.1 State

• avl_storage: data structure containing a mapping from pointers to auctions and liquidation slices, serving
as a memory.

• queued_slices: a pointer to the queue of liquidation slices awaiting inclusion in an auction.

• current_auction: information about the current auction if there is an active auction.

– contents: a pointer to the set of slices in the current auction.

– auction_state: whether the auction is in the descending or ascending phase, and data used to calculate
the current price.

• completed_auctions: a queue (represented as a doubly-linked list) of completed auctions, each auction
containing:

– a set of untouched slices

– the result of an auction, containing the amount of tez sold, amount of kit gained and the winner of an
auction.

At any point in time, any liquidation slice is in only one of the above sets, and they always move from
queued_slices, to current_auction and then to completed_auctions, (then they disappear). Addi-
tionally, this move always happens in order, so an older liquidation_slice is always further in the process than a
younger one.

NOTE: Per-burrow liquidation_slices We need to have access to the liquidation slices for a specific burrow; so slices
for a burrow form a doubly-linked list, each burrow storing a pair of pointers called liquidation_slices, point-
ing to the first and the last liquidation slice of that burrow (if they exist).

See <./avl_diagram.drawio> file for an illustration.

4.3. Liquidation Auctions 35

Checker, Release 0.1alpha

4.3.2 Initiating a liquidation

When liquidation of a burrow is triggered, the amount of tez to be liquidated form a liquidation_slice. * For
details about this process, see <./burrow-state-liquidations.md>.

The new slice is added to the back of the queued_slices queue.

• NOTE: This operation also updates the per-burrow linked list.

4.3.3 Cancelling a liquidation slice

Burrows can cancel auctioning off their liquidation slices on certain conditions. When cancelling a slice, we check if
the slice belongs to the queued_slices, if so, remove it from the set (returning contents back to the burrow). If
not, the process fails.

• NOTE: This operation also updates the per-burrow linked list.

• NOTE: This requires a the queue to have an efficient membership test.

• NOTE: This requires a the queue to support efficient random deletes.

4.3.4 Lot auction

At any time checker is touched, when there is no auction running and there is at least one queued slice, we start an
auction.

Our aim is to take a prefix of the queued_slices queue which contains exactly this amount of tez:

min
total_queued_tez
(max
Constant.max_lot_size
(total_queued_tez * Constants.min_lot_auction_queue_fraction))

However, it is likely that in this process the slices will not add up to the exact amount. In this case, we take the
liquidation_slice causing the overload, split it into two, and push the halves to the end of the new auction and in front
of the queued_slices.

• NOTE: This splitting process has to be efficient, since a single auction likely consists of many small slices. So
it needs to be done without traversing the entire prefix. This pretty much forces us to use a tree-like structure
with branches containing the aggregate tez information of their sub-trees.

Then we start an auction. An auction has minimum_bid value that is a function of current time and the latest bid.

Every bid should be of at least minimum_bid amount of kit. The bidding process debits the bid’s kit from the
contract’s kit ledger and credits back the kit of the previously winning bid if one exists.

The auction is initially a descending auction, with the minimum bid calculated as:

amount_of_tez_inside_auction

* tz_minting

* q

* ((1 - Constants.auction_decay_rate) ^ time_elapsed_since_auction_start)

After the first bid, it becomes an ascending auction, with the minimum bid calculated as:

leading_bid * (1+Constants.bid_improvement_factor)

The auction finishes when the longer of 20 blocks or 20 minutes are passed after the last bid.

36 Chapter 4. Operational descriptions

Checker, Release 0.1alpha

4.3.5 Touching a liquidation_slice

“Touching the liquidation slice” is the process of propagating the result of a completed auction back to the burrows.
When it is triggered, we:

1. Check if the given slice belongs to a completed auction, ignore otherwise.

2. Remove the slice from the contents of the relevant completed_auction.

3. Remove the slice from the linked list at relevant burrows liquidation_slices.

4.3.6 Claiming a winning bid

If a bid is the winning bid of a completed auction where all the liquidation_slices are touched (in other words, its
contents are empty), the bidder can claim the auction’s winnings. This process is the final step of an auction, and after
that the auction itself is cleaned up.

4.3.7 Maintenance

Every time the main checker contract is touched, it touches Constants.number_of_slices_to_process
amount of oldest liquidation_slice’s automatically.

4.4 CFMM subsystem

NOTE: CFMM stands for Constant Function Market Maker. What this means is that when parties exchange kit for
ctez and vice versa, using checker, checker tries to keep the product of kit and ctez within it unchanged (ignoring the
fees of course).

This file gives an operational interpretation of the cfmm API inside the checker contract, and operations on it.

4.4.1 State

• ctez: the total amount of ctez currently held by the cfmm contract.

• kit: the total amount of kit currently held by the cfmm contract.

• lqt: the total amount of liquidity held by the cfmm contract.

Additional fields:

• kit_in_ctez_in_prev_block: the price of kit in ctez (kit / ctez) at the end of the previous block
(as a ratio).

• last_level: the last block that the cfmm contract was touched on (as a nat).

NOTE 1: The reason we store kit_in_ctez_in_prev_block and last_level in the state of cfmm is secu-
rity. When the price implied by cfmm is queried to compute the drift derivative (see system-parameters.md), we don’t
want to give the current price, but instead return the last price at the end of the previous block. This makes it just a
little harder to manipulate these small price fluctuations.

NOTE 2: kit_in_ctez_in_prev_block is always computed as the amount of kit divided by the amount of
ctez, so it can never really grow too much in size. Hence we use a lossless rational for its representation.

4.4. CFMM subsystem 37

Checker, Release 0.1alpha

4.4.2 Initialization

When the system starts, all parameters are set to the lowest non-zero amount. Given that Checker gets deployed on
the chain at level lvl, we initialize the parameters thus:

ctez = 1
kit = 1
lqt = 1
kit_in_ctez_in_prev_block = 1 # same as kit/ctez now
last_level = lvl

Effectively, given that (a) no one can remove the first liquidity token and (b) how rounding works in the operations that
follow, the contract will never be completely out of ctez, kit, or liquidity. So, setting the initial values to one removes
the need for division-by-zero checks, and the first/non-first liquidity provider distinction that is e.g. adopted by Dexter.
Of course, this price is only for the beginning, and it is expected that through trading it will eventually move closer to
the real price.

4.4.3 General notes on the interfaces

• None of the interfaces below refers to prices. Instead, we pass inputs, and minimum and maximum expected
values for things (e.g. kit, ctez, liquidity, or time). If the criteria cannot be met the operations fail. This agrees
with e.g. the API offered by Dexter.

• All the following happen within the smart contract, which means that in the calculations below we often refer
to level (the current block height), as well as now (the timestamp of the current block, as provided by this
block’s baker).

4.4.4 Adding liquidity

First things first: if last_level < level, it means that this is the first time that the cfmm contract is touched
in this block, so we update kit_in_ctez_in_prev_block to the price observed now, and set last_level to
the current height, so that we don’t update kit_in_ctez_in_prev_block again in this block:

kit_in_ctez_in_prev_block = ctez/kit
last_level = level

If last_level = level, then we don’t perform the update; this is not the first time we’ve touched the cfmm
contract in this block.

Inputs

• ctez_amount: The amount of ctez to be added to the cfmm contract.

• max_kit_deposited: The maximum amount of kit to be added to the cfmm contract.

• min_lqt_minted: The minimum amount of liquidity expected to be received.

• deadline: The deadline; starting from this timestamp the transaction can no longer be executed.

If any of the following holds, the transaction fails:

• If we are on or past the deadline (now >= deadline), the transaction fails.

• If no ctez is given (ctez_amount = 0), the transaction fails.

• If no kit is offered (max_kit_deposited = 0), the transaction fails.

38 Chapter 4. Operational descriptions

Checker, Release 0.1alpha

• If no liquidity is to be added (min_lqt_minted = 0), the transaction fails.

So, we calculate the amount of liquidity to mint and the amount of kit that needs to be deposited using the ratio of the
provided ctez vs. the ctez currently in the cfmm contract:

lqt_minted = lqt * (ctez_amount / ctez) # floor
kit_deposited = kit * (ctez_amount / ctez) # ceil

Because of this calculation, we need to know that the pool of ctez is not empty, but this should be ensured by the initial
setup of the cfmm sub-contract. Also

• If lqt_minted < min_lqt_minted then the transaction fails.

• If max_kit_deposited < kit_deposited then the transaction fails.

• If kit_deposited = Kit.zero then the transaction fails.

If all is good, we proceed with updating the parameters

kit = kit + kit_deposited
ctez = ctez + ctez_amount
lqt = lqt + lqt_minted

Note that the complete ctez_amount is consumed. However, kit_deposited might differ from
max_kit_deposited. Hence, we return the leftovers:

kit_to_return = max_kit_deposited - kit_deposited

4.4.5 Removing liquidity

First things first: if last_level < level, it means that this is the first time that the cfmm contract is touched
in this block, so we update kit_in_ctez_in_prev_block to the price observed now, and set last_level to
the current height, so that we don’t update kit_in_ctez_in_prev_block again in this block:

kit_in_ctez_in_prev_block = ctez/kit
last_level = level

If last_level = level, then we don’t perform the update; this is not the first time we’ve touched the cfmm
contract in this block.

Inputs

• lqt_burned: The amount of liquidity to be removed from the cfmm contract.

• min_ctez_withdrawn: The minimum amount of ctez to be received for the removed liquidity.

• min_kit_withdrawn: The minimum amount of kit to be received for the removed liquidity.

• deadline: The deadline; starting from this timestamp the transaction can no longer be executed.

If any of the following holds, the transaction fails

• If we are on or past the deadline (now >= deadline), the transaction fails.

• If no liquidity is to be removed (lqt_burned = 0), the transaction fails.

• If no ctez is expected to be received from this transaction (min_ctez_withdrawn = 0), the transaction
fails.

• If no kit is expected to be received from this transaction (min_kit_withdrawn = 0), the transaction fails.

4.4. CFMM subsystem 39

Checker, Release 0.1alpha

Otherwise, we compute how much ctez and kit should be returned, using the ratio of the provided liquidity vs. the
liquidity currently in the cfmm contract:

ctez_withdrawn = ctez * (lqt_burned / lqt) # floor
kit_withdrawn = kit * (lqt_burned / lqt) # floor

Also, we check that the bounds are respected:

• If ctez_withdrawn < min_ctez_withdrawn, the transaction fails.

• If ctez_withdrawn > ctez, the transaction fails.

• If kit_withdrawn < min_kit_withdrawn, the transaction fails.

• If kit_withdrawn > kit, the transaction fails.

• If lqt_burned > lqt, the transaction fails.

If all is good, we proceed with updating the parameters

kit = kit - kit_withdrawn
ctez = ctez - ctez_withdrawn
lqt = lqt - lqt_burned

and return the withdrawn amounts:

ctez_to_return = ctez_withdrawn
kit_to_return = kit_withdrawn

4.4.6 Buying Kit

First things first: if last_level < level, it means that this is the first time that the cfmm contract is touched
in this block, so we update kit_in_ctez_in_prev_block to the price observed now, and set last_level to
the current height, so that we don’t update kit_in_ctez_in_prev_block again in this block:

kit_in_ctez_in_prev_block = ctez/kit
last_level = level

If last_level = level, then we don’t perform the update; this is not the first time we’ve touched the cfmm
contract in this block.

Inputs

• ctez_amount: The amount of ctez to be added to the cfmm contract.

• min_kit_expected: The minimum amount of kit to be bought.

• deadline: The deadline; starting from this timestamp the transaction can no longer be executed.

If any of the following holds, the transaction fails

• If the amount of ctez given is zero (ctez_amount = 0), the transaction fails.

• If we are on or past the deadline (now >= deadline), the transaction fails.

• If no amount of kit is expected (min_kit_expected = 0), the transaction fails.

Otherwise, we compute how much kit can be bought for the ctez_amount of ctez as follows:

40 Chapter 4. Operational descriptions

Checker, Release 0.1alpha

price = kit / ctez
slippage = ctez / (ctez + ctez_amount)
kit_bought = ctez_amount * price * slippage * (1 - cfmm_fee) # floor

Also, we check that the bounds are respected:

• If kit_bought < min_kit_expected, the transaction fails.

• If kit_bought > kit, the transaction fails.

If all is good, we proceed with updating the parameters

kit = kit - kit_bought
ctez = ctez + ctez_amount

and return the bought amount of kit:

kit_to_return = kit_bought

4.4.7 Selling Kit

First things first: if last_level < level, it means that this is the first time that the cfmm contract is touched
in this block, so we update kit_in_ctez_in_prev_block to the price observed now, and set last_level to
the current height, so that we don’t update kit_in_ctez_in_prev_block again in this block:

kit_in_ctez_in_prev_block = ctez/kit
last_level = level

If last_level = level, then we don’t perform the update; this is not the first time we’ve touched the cfmm
contract in this block.

Inputs

• kit_given: The amount of kit to be sold to the cfmm contract.

• min_ctez_expected: The minimum amount of ctez to be bought.

• deadline: The deadline; starting from this timestamp the transaction can no longer be executed.

If any of the following holds, the transaction fails

• If the amount of kit given is zero (kit_given = 0), the transaction fails.

• If we are on or past the deadline (now >= deadline), the transaction fails.

• If no amount of ctez is expected (min_ctez_expected = 0), the transaction fails.

Otherwise, we compute how much ctez can be bought for the kit_given as follows:

price = ctez / kit
slippage = kit / (kit + kit_given)
ctez_bought = kit * price * slippage * (1 - cfmm_fee) # floor

Also, we check that the bounds are respected:

• If ctez_bought < min_ctez_expected, the transaction fails.

• If ctez_bought > ctez, the transaction fails.

If all is good, we proceed with updating the parameters

4.4. CFMM subsystem 41

Checker, Release 0.1alpha

kit = kit + kit_given
ctez = ctez - ctez_bought

and return the bought amount of ctez:

ctez_to_return = ctez_bought

NOTE: There are more than one ways to calculate things when buying and selling kit. Given that da amount of one
quantity is given, what we do essentially computes first what should the return be for the product of quantities kept by
cfmm to stay the same:

db = da * (b / (a + da))

and then keeps fee of that, thus returning db calculated instead like this:

db = da * (b / (a + da)) * (1 - fee)

Dexter takes an alternative approach, where the fee is (conceptually, at least) on the amount given. That is, the returned
amount is

db = da' * (b / (a + da'))

where

da' = da * (1 - fee)

The two calculations give slightly different results, but hopefully that is not a problem.

4.4.8 Misc

• cfmm_fee = 0.002

42 Chapter 4. Operational descriptions

CHAPTER

FIVE

DEPLOYING CHECKER

TBD

43

Checker, Release 0.1alpha

44 Chapter 5. Deploying Checker

CHAPTER

SIX

GLOSSARY

6.1 Kit

A coin / token created and destroyed as part of the system.

6.2 Burrow

A contract for a “deposit account” that supports a few operations, e.g. “minting” (ie. borrowing) kit, or “burning”
(ie. repaying) kit. A fresh burrow contract is created for every depositor, and only Checker is allowed to access it, so
operations on burrows are performed via the Checker contract.

6.3 Circulating kits

The number of kits that exist. See also: outstanding kits.

6.4 Outstanding kits

The number of kits that it would take to close all currently open burrows. See also: circulating kits.

6.5 Liquidation lot

A batch of liquidation slices currently being auctionned of.

6.6 Liquidation slice

Some amount of tez, tied to a burrow, which is inserted in the liquidation queue to be auctionned of for kit

45

Checker, Release 0.1alpha

6.7 Liquidation queue

A dequeue implemented as a balanced binary tree representing an ordered list of liquidation slices. Slices at the front
of the queue are periodically batched into a liquidation lot

6.8 Imbalance

The ratio of the number of circulating kits to the number of outstanding kits.

6.9 Imbalance adjustment

A compounding fee or reward applied to burrows which implicitly increases or decreases the number of outstanding
kits over time to bring it closer to the number of circulating kits so as to bring the imbalance closer to 1.

46 Chapter 6. Glossary

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

47

	Introduction
	What is Checker?
	System overview of a Checker deployment
	Configuring and building Checker for different use-cases

	Design
	Concepts
	The clock
	Target and quantity
	The instantaneous drift
	Oracles

	Algorithmic control
	Burrows
	Burrowing and overburrowing
	Burrow fee
	Imbalance adjustment

	Liquidation
	Liquidation auction
	CFMM

	Functional Specification
	Checker
	Working with burrows
	CFMM Exchange
	Liquidation Auctions
	Maintenance entrypoints
	FA2 Interface
	FA2 Views
	Deployment

	wtez
	Overview
	Deposits and withdrawals
	FA2 Interface
	Internal entrypoints

	wctez
	Overview
	Minting and redeeming tokens
	FA2 Interface

	Operational descriptions
	System Parameters
	State
	Initialization
	Price API
	Adjustment index
	Touching
	Misc

	Burrow State & Liquidation
	State
	Touching
	Is a burrow collateralized (i.e. not overburrowed)?
	Is a burrow a candidate for liquidation?
	How much collateral should we liquidate?
	Was the liquidation warranted?
	What if the liquidation was warranted?
	Misc

	Liquidation Auctions
	State
	Initiating a liquidation
	Cancelling a liquidation slice
	Lot auction
	Touching a liquidation_slice
	Claiming a winning bid
	Maintenance

	CFMM subsystem
	State
	Initialization
	General notes on the interfaces
	Adding liquidity
	Removing liquidity
	Buying Kit
	Selling Kit
	Misc

	Deploying Checker
	Glossary
	Kit
	Burrow
	Circulating kits
	Outstanding kits
	Liquidation lot
	Liquidation slice
	Liquidation queue
	Imbalance
	Imbalance adjustment

	Indices and tables

